References

  • Abramson, P. R., & Inglehart, R. (1995). Value change in global perspective. Ann Arbor, Mich: University of Michigan Press.
  • Amin, K. S., Forman, H. P., & Davis, M. A. (2024). Even with ChatGPT, race matters. Clinical Imaging, 109, 110113.
  • Baert, S., De Pauw, A. S., & Deschacht, N. (2016). Do employer preferences contribute to sticky floors?. ILR Review, 69(3), 714-736. 
  • Barocas, S., & Selbst, A. D. (2016). Big data’s disparate impact. California Law Review., 104, 671.
  • Bertrand, M., & Mullainathan, S. (2004). Are Emily and Greg more employable than Lakisha and Jamal? A field experiment on labor market discrimination. American economic review, 94(4), 991-1013.
  • Chander, A. (2016). The racist algorithm. Mich. L. Rev., 115, 1023.
  • Dastin, J. (2018, October 11). Insight - Amazon scraps secret AI recruiting tool that showed bias against women. Reuters. link
  • Dator, James Allen, Richard Pratt, et Yongseok Seo. Fairness, globalization, and public institutions : East Asia and beyond. Honolulu : University of Hawaiʻi Press. 2006.
  • De-Arteaga, M., Romanov, A., Wallach, H., Chayes, J., Borgs, C., Chouldechova, A., … & Kalai, A. T. (2019). Bias in bios: A case study of semantic representation bias in a high-stakes setting. In proceedings of the Conference on Fairness, Accountability, and Transparency (pp. 120-128).
  • Drage, E., & Mackereth, K. (2022). Does AI debias recruitment? Race, gender, and AI’s “eradication of difference”. Philosophy & technology, 35(4), 89.
  • Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2012, January). Fairness through awareness. In Proceedings of the 3rd innovations in theoretical computer science conference (pp. 214-226).
  • Fabris, A., Baranowska, N., Dennis, M. J., Graus, D., Hacker, P., Saldivar, J., … & Biega, A. J. (2025). Fairness and bias in algorithmic hiring: A multidisciplinary survey. ACM Transactions on Intelligent Systems and Technology, 16(1), 1-54. 
  • Fernández-Reino, M. & Brindle, B. (2024) Migrants in the UK labour market: an overview. Migration Observatory briefing, COMPAS, University of Oxford
  • Garg, N., Schiebinger, L., Jurafsky, D., & Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635-E3644. 
  • González, M. J., Cortina, C., & Rodríguez, J. (2019). The role of gender stereotypes in hiring: A field experiment. European Sociological Review, 35(2), 187-204. 
  • Houser, K. A. (2019). Can AI solve the diversity problem in the tech industry: Mitigating noise and bias in employment decision-making. Stan. Tech. L. Rev., 22, 290.
  • Iso, H., Pezeshkpour, P., Bhutani, N., & Hruschka, E. (2025). Evaluating Bias in LLMs for Job-Resume Matching: Gender, Race, and Education. arXiv preprint arXiv:2503.19182.
  • Joseph, M., Kearns, M., Morgenstern, J. H., & Roth, A. (2016). Fairness in learning: Classic and contextual bandits. Advances in neural information processing systems, 29.
  • Kidder, L. H. (1986). There is no word for “fair”—Notes from Japan. In International Conference on Social Justice in Human Relations, Leiden University, Netherlands.
  • Kidder, L.H., Muller, S. (1991). What Is “Fair” in Japan?. In: Steensma, H., Vermunt, R. (eds) Social Justice in Human Relations. Critical Issues in Social Justice. Springer, Boston, MA. doi link
  • Kim, Tae-Yeol et Kwok Leung. (2007) « Forming and reacting to overall fairness: A cross-cultural comparison », Organizational behavior and human decision processes, vol.104 no 1. p. 83‑95.
  • ‌Köchling, A., & Wehner, M. C. (2020). Discriminated by an algorithm: a systematic review of discrimination and fairness by algorithmic decision-making in the context of HR recruitment and HR development. Business Research, 13(3), 795-848.
  • Kordzadeh, N., & Ghasemaghaei, M. (2021). Algorithmic bias: review, synthesis, and future research directions. European Journal of Information Systems, 31(3), 388–409. doi link
  • Kübler, D., Schmid, J., & Stüber, R. (2018). Gender discrimination in hiring across occupations: a nationally-representative vignette study. Labour Economics, 55, 215-229. 
  • Kumar, S. H., Sahay, S., Mazumder, S., Okur, E., Manuvinakurike, R., Beckage, N., … & Nachman, L. (2024). Decoding biases: Automated methods and llm judges for gender bias detection in language models. arXiv preprint arXiv:2408.03907. 
  • Kuncel, N. R., Klieger, D. M., & Ones, D. S. (2014). In hiring, algorithms beat instinct. Harvard business review, 92(5), p32-32.
  • Liu, Y., Radanovic, G., Dimitrakakis, C., Mandal, D., & Parkes, D. C. (2017). Calibrated fairness in bandits. arXiv preprint arXiv:1707.01875.
  • Mahler, I., Greenberg, L., & Hayashi, H. (1981). A comparative study of rules of justice: Japanese versus American. Psychologia: An international journal of psychology in the orient.
  • Nemanick, Jr, R. C., & Clark, E. M. (2002). The differential effects of extracurricular activities on attributions in resume evaluation. International Journal of Selection and Assessment, 10(3), 206-217.
  • Petit, P. (2007). The effects of age and family constraints on gender hiring discrimination: A field experiment in the French financial sector. Labour Economics, 14(3), 371-391. 
  • Quillian, L., & Midtbøen, A. H. (2021). Comparative perspectives on racial discrimination in hiring: The rise of field experiments. Annual Review of Sociology, 47(1), 391-415. 
  • Raghavan, M., Barocas, S., Kleinberg, J., & Levy, K. (2020, January). Mitigating bias in algorithmic hiring: Evaluating claims and practices. In Proceedings of the 2020 conference on fairness, accountability, and transparency (pp. 469-481).
  • Rivera, L. A. (2011). Ivies, extracurriculars, and exclusion: Elite employers’ use of educational credentials. Research in Social Stratification and Mobility, 29(1), 71-90.
  • Rooth, D. O. (2021). Correspondence testing studies. IZA World of Labor. 
  • Saxena, Nripsuta Ani, Karen Huang, Evan DeFilippis, et al. (2020) « How do fairness definitions fare? Testing public attitudes towards three algorithmic definitions of fairness in loan allocations », Artificial intelligence, vol.283. p. 103238‑15.
  • Scarborough, J. (1998). The origins of cultural diVerences and their impact on management. London: Quorum Books
  • Thomas, C.W., Cage, R.J., and Foster, S.C., (1976). Public opinion on criminal law and legal sanction: an examination of two conceptual models. The journal of criminal law and criminology, 67 (1), 110–116. doi:10.2307/1142462
  • Veldanda, A. K., Grob, F., Thakur, S., Pearce, H., Tan, B., Karri, R., & Garg, S. (2023). Are Emily and Greg still more employable than Lakisha and Jamal? Investigating algorithmic hiring bias in the era of ChatGPT. arXiv preprint arXiv:2310.05135. 
  • The Migration Observatory. (2024, June 10). Migrants in the UK labour market: An overview. Migration Observatory